A Simple Yet Efficient Rank One Update for Covariance Matrix Adaptation

نویسندگان

  • Zhenhua Li
  • Qingfu Zhang
چکیده

In this paper, we propose an efficient approximated rank one update for covariance matrix adaptation evolution strategy (CMA-ES). It makes use of two evolution paths as simple as that of CMA-ES, while avoiding the computational matrix decomposition. We analyze the algorithms’ properties and behaviors. We experimentally study the proposed algorithm’s performances. It generally outperforms or performs competitively to the Cholesky CMA-ES.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The CMA Evolution Strategy: A Tutorial

3 Adapting the Covariance Matrix 10 3.1 Estimating the Covariance Matrix From Scratch . . . . . . . . . . . . . . . . 10 3.2 Rank-μ-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Rank-One-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 A Different Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 Cumulation: Uti...

متن کامل

Feature and model space speaker adaptation with full covariance Gaussians

Full covariance models can give better results for speech recognition than diagonal models, yet they introduce complications for standard speaker adaptation techniques such as MLLR and fMLLR. Here we introduce efficient update methods to train adaptation matrices for the full covariance case. We also experiment with a simplified technique in which we pretend that the full covariance Gaussians a...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

Feature and model space speaker adaptati

Full covariance models can give better results for speech recognition than diagonal models, yet they introduce complications for standard speaker adaptation techniques such as MLLR and fMLLR. Here we introduce efficient update methods to train adaptation matrices for the full covariance case. We also experiment with a simplified technique in which we pretend that the full covariance Gaussians a...

متن کامل

Approximating the Covariance Matrix with Low-rank Perturbations

Covariance matrices capture correlations that are invaluable in modeling real-life datasets. Using all d elements of the covariance (in d dimensions) is costly and could result in over-fitting; and the simple diagonal approximation can be over-restrictive. We present an algorithm that improves upon the diagonal matrix by allowing a low rank perturbation. The efficiency is comparable to the diag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.03996  شماره 

صفحات  -

تاریخ انتشار 2017